Version 5 (modified by dc, 7 years ago) (diff)

--

# Inertial Tensors and Mass Properties for the BarrettHand BH8-280

The inertial properties calculated here represent the masses and inertias of each link of the BarrettHand BH8-280. All calculations were made using SolidWorks 2012 SP 3.0 and CAD models that include all mechanical components of the hand (including fasteners) and all electrical components except wiring. The mass of an actual finger was measured at

## Mass Properties for Frame W (hand base frame) with palm pad

Output coordinate System: Frame W (opaque)

Mass = 0.60858 kilograms

Volume = 0.00024871 cubic meters

Surface area = 0.24908 square meters

Center of mass: ( meters )

X = 5.0019e-005 Y = -0.0044561 Z = 0.037268

Principal axes of inertia and principal moments of inertia: ( kilograms * square meters ) Taken at the center of mass.

Ix = (0.0025349, 0.91612, -0.4009) Px = 0.00047536 Iy = (0.012636, -0.40089, -0.91604) Py = 0.0006507 Iz = (-0.99992, -0.0027435, -0.012592) Pz = 0.00069861

Moments of inertia: ( kilograms * square meters ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 0.0006986 Lxy = 2.7577e-007 Lxz = -7.8138e-007 Lyx = 2.7577e-007 Lyy = 0.00050354 Lyz = -6.44e-005 Lzx = -7.8138e-007 Lzy = -6.44e-005 Lzz = 0.00062253

Moments of inertia: ( kilograms * square meters ) Taken at the output coordinate system.

Ixx = 0.001556 Ixy = 1.4013e-007 Ixz = 3.5309e-007 Iyx = 1.4013e-007 Iyy = 0.0013488 Iyz = -0.00016547 Izx = 3.5309e-007 Izy = -0.00016547 Izz = 0.00063461

## Mass Properties for Frame W (hand base frame) without palm pad

Output coordinate System: Frame W (opaque)

Mass = 0.59573 kilograms

Volume = 0.00023933 cubic meters

Surface area = 0.23262 square meters

Center of mass: ( meters )

X = 5.1098e-005 Y = -0.0050433 Z = 0.036671

Principal axes of inertia and principal moments of inertia: ( kilograms * square meters ) Taken at the center of mass.

Ix = (0.0027331, 0.90166, -0.43244) Px = 0.00045391 Iy = (0.01699, -0.43242, -0.90151) Py = 0.00063852 Iz = (-0.99985, -0.0048831, -0.016501) Pz = 0.00067156

Moments of inertia: ( kilograms * square meters ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 0.00067154 Lxy = 2.9365e-007 Lxz = -7.6321e-007 Lyx = 2.9365e-007 Lyy = 0.00048844 Lyz = -7.1984e-005 Lzx = -7.6321e-007 Lzy = -7.1984e-005 Lzz = 0.00060401

Moments of inertia: ( kilograms * square meters ) Taken at the output coordinate system.

Ixx = 0.0014878 Ixy = 1.4013e-007 Ixz = 3.5309e-007 Iyx = 1.4013e-007 Iyy = 0.0012896 Iyz = -0.00018216 Izx = 3.5309e-007 Izy = -0.00018216 Izz = 0.00061916

## Mass Properties for Frame 1 (finger spread frame)

Output coordinate System: F1 (opaque)

Mass = 0.14109 kilograms

Volume = 3.919e-005 cubic meters

Surface area = 0.058268 square meters

Center of mass (meters):

X = 0.030616 Y = -7.3219e-005 Z = -0.011201

Principal axes of inertia and principal moments of inertia (kilograms * square meters), taken at the center of mass:

 I = (-0.99149, -0.0047957, -0.13013) P = 1.9838e-005 I = (0.13011, 0.0033343, -0.99149) P = 6.904e-005 I = (0.0051888, -0.99998, -0.0026819) P = 7.4106e-005

Moments of inertia (kilograms * square meters), taken at the center of mass and aligned with the output coordinate system:

 Lx = 2.0672e-005 Ly = 2.6024e-007 Lz = 6.3481e-006 Lx = 2.6024e-007 Ly = 7.4105e-005 Lz = 1.7118e-008 Lx = 6.3481e-006 Ly = 1.7118e-008 Lz = 6.8207e-005

Moments of inertia (kilograms * square meters), taken at the output coordinate system:

 Ix = 3.8374e-005 Iy = -5.604e-008 Iz = -4.2034e-005 Ix = -5.604e-008 Iy = 0.00022405 Iz = 1.3283e-007 Ix = -4.2034e-005 Iy = 1.3283e-007 Iz = 0.00020045

## Mass Properties for Frame 2 (finger inner link frame) without fingertip torque sensor

Output coordinate System: F2_Origin

Mass = 0.05832 kilograms

Volume = 1.629e-005 cubic meters

Surface area = 0.026068 square meters

Center of mass (meters):

X = 0.022042 Y = 0.00082603 Z = 0.0005526

Principal axes of inertia and principal moments of inertia (kilograms * square meters), taken at the center of mass:

 I = (-0.99971, -0.016746, 0.017324) P = 4.7372e-006 I = (0.016611, -0.99983, -0.007873) P = 4.1939e-005 I = (0.017453, -0.0075829, 0.99982) P = 4.3077e-005

Moments of inertia (kilograms * square meters), taken at the center of mass and aligned with the output coordinate system:

 Lx = 4.7592e-006 Ly = 6.2295e-007 Lz = -6.6417e-007 Lx = 6.2295e-007 Ly = 4.1929e-005 Lz = -2.1644e-009 Lx = -6.6417e-007 Ly = -2.1644e-009 Lz = 4.3066e-005

Moments of inertia (kilograms * square meters), taken at the output coordinate system:

 Ix = 4.8168e-006 Iy = 1.6848e-006 Iz = 4.6191e-008 Ix = 1.6848e-006 Iy = 7.0281e-005 Iz = 2.4457e-008 Ix = 4.6191e-008 Iy = 2.4457e-008 Iz = 7.144e-005

## Mass Properties for Frame 2 (finger inner link frame) with fingertip torque sensor

Output coordinate System: F2_Origin

Mass = 0.062139 kilograms

Volume = 1.7634e-005 cubic meters

Surface area = 0.028654 square meters

Center of mass (meters):

X = 0.023133 Y = 0.00078642 Z = 0.00052792

Principal axes of inertia and principal moments of inertia (kilograms * square meters), taken at the center of mass:

 I = (-0.99972, -0.015048, 0.018278) P = 4.7942e-006 I = (0.014917, -0.99986, -0.0073066) P = 4.3325e-005 I = (0.018386, -0.0070319, 0.99981) P = 4.4454e-005

Moments of inertia (kilograms * square meters), taken at the center of mass and aligned with the output coordinate system:

 Lx = 4.8162e-006 Ly = 5.7981e-007 Lz = -7.2483e-007 Lx = 5.7981e-007 Ly = 4.3317e-005 Lz = -2.6653e-009 Lx = -7.2483e-007 Ly = -2.6653e-009 Lz = 4.4441e-005

Moments of inertia (kilograms * square meters), taken at the output coordinate system:

 Ix = 4.872e-006 Iy = 1.7103e-006 Iz = 3.4041e-008 Ix = 1.7103e-006 Iy = 7.6588e-005 Iz = 2.3133e-008 Ix = 3.4041e-008 Iy = 2.3133e-008 Iz = 7.7733e-005

## Mass Properties for Frame 3 (fingertip frame) without fingertip pressure pad

Output coordinate System: F3 (opaque)

Mass = 0.041377 kilograms

Volume = 1.5627e-005 cubic meters

Surface area = 0.019684 square meters

Center of mass (meters):

X = 0.022825 Y = 0.0010491 Z = 0.00042038

Principal axes of inertia and principal moments of inertia (kilograms * square meters), taken at the center of mass:

 I = (-0.99921, -0.032055, 0.023536) P = 3.0842e-006 I = (0.023767, -0.0068431, 0.99969) P = 1.568e-005 I = (-0.031884, 0.99946, 0.0075995) P = 1.6826e-005

Moments of inertia (kilograms * square meters), taken at the center of mass and aligned with the output coordinate system:

 Lx = 3.1053e-006 Ly = 4.3996e-007 Lz = -2.9595e-007 Lx = 4.3996e-007 Ly = 1.6812e-005 Lz = -1.8205e-008 Lx = -2.9595e-007 Ly = -1.8205e-008 Lz = 1.5673e-005

Moments of inertia (kilograms * square meters), taken at the output coordinate system:

 Ix = 3.1582e-006 Iy = 1.4308e-006 Iz = 1.0106e-007 Ix = 1.4308e-006 Iy = 3.8376e-005 Iz = 0 Ix = 1.0106e-007 Iy = 0 Iz = 3.7275e-005

## Mass Properties for Frame 3 (fingertip frame) with fingertip pressure pad

Output coordinate System: F3 (opaque)

Mass = 0.04166 kilograms

Volume = 1.5911e-005 cubic meters

Surface area = 0.02168 square meters

Center of mass (meters):

X = 0.02295 Y = 0.0010739 Z = 0.00041752

Principal axes of inertia and principal moments of inertia (kilograms * square meters), taken at the center of mass:

 I = (-0.99919, -0.032581, 0.023483) P = 3.0982e-006 I = (0.023724, -0.0070039, 0.99969) P = 1.5816e-005 I = (-0.032406, 0.99944, 0.0077712) P = 1.6962e-005

Moments of inertia (kilograms * square meters), taken at the center of mass and aligned with the output coordinate system:

 Lx = 3.1199e-006 Ly = 4.5115e-007 Lz = -2.9813e-007 Lx = 4.5115e-007 Ly = 1.6948e-005 Lz = -1.8635e-008 Lx = -2.9813e-007 Ly = -1.8635e-008 Lz = 1.5809e-005

Moments of inertia (kilograms * square meters), taken at the output coordinate system:

 Ix = 3.1752e-006 Iy = 1.4779e-006 Iz = 1.0106e-007 Ix = 1.4779e-006 Iy = 3.8897e-005 Iz = 0 Ix = 1.0106e-007 Iy = 0 Iz = 3.78e-005